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UMMARY

The work reported was undertaken in connection with
a vibration study of helicopter rotors. The analysis of
vibration and certain other pnroblems require a knowledge
not only of the aversage induced velocity but also of its
distribution around the rotor disk., A concept of a
simplified vortex system of a rotor wake is used in
obtaining a formula for the normal component of induced
velocity slong the fore-and-aft diameter of the rotoer
disk. This formula is intended to represent the main
effect of the skewed wake in producing an uneven veloclty
pattern at the rotor. This induced velocity is expressed
in terms of elliptic integrals as a function of the skew
angle and of the circulation per unit axial length of the
wake. A simple approximation to this function consisting
of the first two terms of a Taylor expansion and gziving
the value and the slope of the induced-velocity function
at the center of the disk is also presented.

An avproximate method of representing the induced
elocity in terms of flight velocity for a given thrust
has also been indicated by combining the present theory
with Glauvert's thrust equation.

A comparison of the theory with corresponding values
of induced velocities computed by Seibel's formula from
pitching-moment data published by Vheatley and Biolettil
is taken as evidence that the most significant factors
have been tsken into account.
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TNTRODUGTTON

The work reported herein was underteken in connec-
tion with a vibration study of helicopter rotors. Although
for certain purposes the use of an average induced velocity
assumed constant over the rotor disk gives reasonable
accuracy, the analysis of vibration and certain other
problems require a knowledge of the distribution of induced
velocity around the rotor disk. Very little such informa-
tion, however, 1s avalilable. Several writers have recog-
nized that the induced veloclity increases toward the rear
of the rotor disk but have left the magnitude of this
increase as a matter of speculation. Glauert (reference 1)
and Wheatley (reference 2) have used an induced-veloclty
formula containing a first harmonic term with an unknown
coefficient ¥ having a value somewhere between O and 1.
Nikolsky (reference %) has suggested a formula that is
equivalent to putting K = 2u, where pu 1s the ratio
of the flight velocity parallel to the disk to the tip
speed. Seibel (reference It) has recently suggested a
method of deducing values of the first harmonic induced
velocity from experimental measurements of the piltching
moment of a gyroplane by Theatley and Bioletti (reference 5).
Seibel gives an example of the use of such data for
assumed valuss of pertinent parameters and shows that the
resulting variations of induced drag may be expected to
produce a peak of vibration at around 25 wiles per hour
for a typical case.

In the present paper a concept of a simplified vortex
system of a rotor is used for obtaining a formula for the
normal component of induced velocity along the fore-and-
aft diameter of the rotor disk.

BASIS OF ANALYSIS

The aerodynamic theory of helicopters can be thought
of as a generalization of propeller theory; thus certain
analytical methods found in propeller literature can be
extended to apply to helicopters. The method used herein
1s based on the assumption of an idealized pilcture of a
wake vortex pattern consisting of an elliptic cylinder
which 18, in general, skewed with respect to the rotor
axis at an angle that depends upon the flight veloclty
and upon the induced velocities. Enough simplifyying
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assumptions are made about the wake vorticity distribu-
tion to obtain a tractable form for the integration of
the 3lot and Savart law and thus to represent the main
effect of the skewed wake in producing an uneven induced-
velocity pattern st the rotor.

The walke pattern i1s assumed, for the present purpose,
to form a continuous Qlut“1butlon of vortex lines on the
surface of an elliptic cylinder such as would be formed
by the vorticity sﬁvd from an infinite number of blades
with consgtant circulation and very light loading. The
analysis is further simplified by making use of the
property that the induced-velocity field of the helical
vortex system can be considered formed from two simpler
vortex systems of which one is composed of circular vortex
rings and the other of axial vortex lines. (See fig. 1.)
The circular rings determine the fore-and-aft distribution
of veloclties, which are the important ones at small
advance ratios; whereass the axial lines determine the
rota bwonal velocities of the wake, which are not con-
sidered important for the present problem.

With the assumed picture of the vortex wake, the
normal component of induced ve7oclty along the fore-and-
aft diameter of the rotor disk is Odbulned in closed
form as a function of the wake geomstry and of the
strength of the vortex sheet.

Although the skew angle and the vortex strength are
the fundamental variables of the present problem, it 1
desirable in applying the theory to have the induced
velocl ty expressed in terms of flight velocity for con-.
stant thrust. One method of representing the results in
o

i
this form has therefore been indicated by combining ther
with Glauert's thrust equation.

SYMBOLS

%X wake slwew angle
&, N, { coordinates relative to skewed wale (see fig. 2)
X, ¥, z coordinates relative to rotor disk (see fig. 2)

Vg normal induced-velocity component at rotor disk
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v,ol, v, ', Ve', vy! induced-velocity components in
bid Z & £ ;
= ultimate wake

u value of induced velocity at center of rotor disk

1y rate of change of induced velocity along fore-and-
aft diameter of rotor at r =0

Uy hovering induced velocity

A flight velocity

v resultant velocity at rotor disk in Glauert's
formula

a angle of flight path to rotor dlsk

r distance from hub to position on blade; expressed

nondimensionally in terms of rotor radius

U azimuth angle of blade position
T thrust
p air density
A area of rotor disk
CT thrust coefficient
di line element
ANALYSTS

consider the vortex wake pattern of figure 1(b).
Appendix A shows that, if the vortex lines are circles,
the induced velocities inside the ultimate wake (see
fig. 2) are related by the eguation

Fora >»% 7 - X must be used in place of .
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The svaluation of the induced velocity at the disk
is given in apoendix B. The complete expression for the
distribution of the component normal to the disk along
the fore-and-aft diameter is

1
Tl (A (b o
5 (r)

us Slflr)(l

+ r(r + 1) )
Liw tdn; \/—l-? + r ~<b o >H 2’ 1"’) (2 - 3J >H(""b2’3)

(2)

where

T . e e .
X(r) and B<§yb1,3) are complste elliptic integrals of

]9 ba’

the first and th
& wing egnation (BlZ2) in appendix B.

ds, respectively, and b
owi

and 7 are def!

For many purposes a sufficient approximation to
this expression is obtained by using the value and the
slove of the function at r = 0 revpresenting the first
two terms of a Taylor expanslon

V, T U+ U cos Y + ... (%)
v
where, for X, < =
u, = u tan
1 2
and, for X, S g,
up = u cot

cated

Thet the higher-order terms ai
al induced

8
from the plot of the ervact expressi
veloeclty ageinst radius Tfor the extrem

. v o
which X, = 5. (See flig. 3.)
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In order to make use of the expressions developed
herein, the skew angle <X, must be related to othar flight
parameters. A simple method is to combine equation (3)
with the sxpressions given by Wwald (reference 6), which
are based on Glauert's formula for thrust. The induced
velocity u in Glauvert's formula

T = 2pAuVv! (h)
is identified with the value at the center of the disk
in the present theory.
From the geometry of the wake, it can be seen that

~=— = cos(y, + a) (5)

Then by using the relations, for %, < gj

Ve
E o opan K
v,~—tdl’12 (6a)
¢
o
for X > 5
Ve ! .
S = cot?g (6b)
vy ! 2
¢
and
v_i 7
u = B
oy > (7)
:""2 )
it follows that
2 tan'é'
v 2 8
= = (8)
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If wa2ld's equation

n
no
Neo)

is written in the form

}
!J‘ N
ﬂE)' - 1
\“‘1 A - , ]
‘ 1 + 2l gin a + (E
u u
> (10)
v _ o ouV
u, | u,u
vy
equations (%), (3), and (102) cen bo used to obtain nlots

of w/u, =and uy/a, agaﬁnst V/u, for constant a.
These olots are shown in figure L. These curves indicate
that the first harmonlc velocity term is a maximum at a
fairly low flight speed, as was expected from Seibel's
interpretation of OLtckLlﬂ—Womept data. The curves also
show that the height of the pezk decreases as the angle «
increeses toward 909 which corresponds to verticsl C]L“b
of a helicopter.

Curves are also plotted in figure ) for negative
ralues of a  but, since the vortex ring and the turbulsnt
states of operation are included in thils range, the vortex
theory based on the assumption of a long cylindrical wake
cannot be expected fto give reliskble results, Part of the
curves of Ifigure have conseguently besn plotted as
dashed lines to indicate their nrovisional status.

¢

Fb 4
-

L direct experimental check of th aoplicability of
the »nresent tseory has not been possible because of the
unavailability of dats on induced velocities. 4 tentative
comparison with Seibel's method has been made, however,
by computing the induced velocities corresponding to a
series of test conditions for which pitching-moment data
are available and then us’ng Seibel's formula to comnute
values of incduced velocity for comparison with the results
of the present theory.
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A plot of wuy/uy, against V/u,, determined by
Seibel's formula and the data of reference 5, 1s shown
in figure 5 for two values of the blade pltch setting.
For comparison, the formula for,6 u,/u, given in the
nregsent paper has been applied [by use of the

formula L = .GNEW&.‘£§i) to the same test conditions
Vi T
y

u cos
0

specified by the values of a, CT’ and u 1in refer-
ence 5. The resulting curves are also plotted in fig-
ure 5, which shows that both methods give peaks of the
same general appearance. Systematic errors influencing
the magnitude of the theoretical peak may be expected
from several sources, which include assumptions of

(1) Vortices shed only at blade tips
(2) No contraction of wake
(3) Infinite number of blades

(L) flope of induced-velocity function as repre-
sentative of front and back inequallty of
veloclty

The net effect of these assumptions appears to be to
underestimate the magnitude of u,. The use of an

effective radius smaller than the actual rotor radius
would give larger induced velocitiss for the same total
thrust and would tend to show closer agreement between
the curves.

Tn view of the various approximations and possible
sources of error involved in both methods, the gqualitative
agreement between these two methods is evidence that the
most significant factors have been taken into account.
Further testing and refinement of analysis should lead
to a more detailed understanding of the phenomena
involved.

CONCLUSTONS

I'rom theoretical considerations, 1t was concluded
that the important variable determining the increase of
induced velocity toward the rear of a helicopter rotor
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in forward flight 1s the angle X, by which the wake

axls is skewed from the rotor disk axis. If the induced-
velocity distribution is represented by a series
expression of the form

: ‘r’ ....
v, u + Uy 7 cos ¥ +

integration of the Biot and Savart law for 2 simplified
form of vortex wake gives the value

~/
_ + oY
u, = u tan &
1 2
where
v, normel component of induced velocity
u value of v, at center of disk
r nondimensional radial coordinate
A azimuth angle

The exact expression for the normal component of
the induced velocity along the fore-and-aft diameter for
the assumed vortex wake was also found in closed form
in terms of complete elliptic integrals of the first snd
third kinds.

It 1s believed thet systemat

ge of an l1dealized wake may be pe

using an effective radius smaller
adi

errors due to the
roly compensated by
hau the actual rotor

ﬁ”‘O

ﬁ

glev Memorilal Aeronsutical Lalzoratory
T\(\J_

Netional Advisory Commilttee for Leronautiocs
Langlev Flelds Va.
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AFPENDIX A

VELOCITIES IN THE ULTIMATE WAKE

et

The assurption of clrcular vortexz lines on the
surface of an elliptic cylinder forming the ultimate wake
is shown to imply a velocity which is constant inside
the walke and such that

The method is first to try to satisfy all the require-
ments of the problem by assuming that inside the cylinder

the velocity components V?‘ and v§7 are constant but

of undetermined magnitude. Their constancy means that
the wale cylinder moves as though it were a rigid cylinder
and the flow outside is consgeguently the same as the
well-known velocity field outside a solid cylinder,

The vortex strength can then be determined in terms of
the assumed velocities by evaluating the line integral

of velocity around a sultable path enclosing a portion

of the surface of the cylinder =nd equeting this integral
to the total circulation of vortex lines that thread the
path of integration. This eguation yields an expression
for the slope of vortex lines on the cylinder, which can
be integrated to give an equation of the vortex lines.
Comparison with the squation for circles shows that

Ve!

Yt

!

= t Z"
tan 5

Consider the line integral of veloclty around path A
of figure 6. If the circulation per unit axial distance
along the wake 1s denoted by I'/s, the line integral
around path A shows that

L —_—
8

= vg



WACA ARR No. L5E10 11

Mow consider the velOﬂltv integral for path B in
the ~nlarne of fignre 5. Aef““r“d to axes fixed in still
air, 1 gotant al on the outside surface for the
motions in ths &rn~piane Ls

where vVe' refers to the constant veloclty inside the
cylinderZ This potential Is the same s In the flow at
the surface of an slliptic cylindsr moving through an

L Ll
incompressible fluid that ig at rest at infinity. Then

)
/ a7 = L a0 - v, g
M Y? Ve G

=

= ve! {a + b) gin @6 46

This integrsel is egqual to the total circulation thresaded
.t ; ' i P

a i > of tho vortex lines 1s represented
by ¢ 16 tne numosr of lines that thread the patan B
Coat .

R I
s g

Consequenitly
Troaf
L Y
ey, {a + b)) osin 9
Y S

PR e
and, arfter Integravion,

The eguation of a circular vortex lins, however, ig
9 3
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whers

Hence,

o ! X i
Vels Vel c
r w.;'g' a + b
. sin
1 + cos

= Lo

X
n'—.
2

1t shonld be nnted thut thls relation implies that,
inside the ultimate-wake cylinder,

2
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APPENDIX B
INDUCED-VELOCITY FIZLD AT ROTOR DISK

As stated previously, the entire vortex wake is
considered to be an elliptic cylinder composed of &
continuous distribution of circular vortex filaments
varallel to the rotor disk. (See fig. 7.) By using
the Blot and Savart law, the velocity vector induced by
the vortex wake at any polnt P having coordinates

(r,¥ ) in the plane of the rotor disk is glven by

o

2r & i 3-
T 1+ 2
— m E
Vo= e . osV +cos -z ta ~-giv - in W
S-”Er/ r cosY+cos B -z tan'X, -sin 8 -r sinV
Bo¥ 4ot sin B cos O
where
/s axlal-vortex strensgth
r nondimenaional distance in terme.of rotor radius
m = tan?@

i, J, k unit vectors elong x, y, and =z directions,
respectively

¥ distence from point (r, V) to elemsnt dp dz of
weke surface

[

the value o p & given by

P2 = 1+ 12+ 22 (1+m?2) - 2rzm cos ¥ =2zm cos 8 +2r cos(V -8) (r2)

al comnonent of the induced veloclty w at

The vertilc s 4
(r,¥) can be written from equation (Bl) as

the point



1L NACA ARR No. LSE10

f 1-zmcos8+r005(\l"‘e) dz 46 (33)

o2

The value of v, along the fore-and-aft diameter of the

rotor disk can be determined by setting VY= m 1in
equations (B2) and (B3); thus

\/_—_ 3
=y Viem 1+m f [1-(zm+r) cos B8] dz d8

3/2
[1+r + g (1+m )+ 2rzm- 2(mz + r) cosél

v
zwh"
B=0 “2=0.

(BL)

where I/s has been replaced by the vertical induced
velocity in the ultimate wake v,'. (See appendix A.)
The integration with respect to 2z can be readily
performed by use of formula 200 of Peirce's "A Short

Table of Integrals." The result is
v A 1+ r cos 8 -r° rv/l + o
z - -
Y= /_ 1+r°-2r cos 0 +m2 sin29 m\/i+r2-2r cos O

r 1+m2 \/l 2r cos 8 +r2
+

a8 (B5)
m<l+r - 2r cos B +m2 s1n26>

in which the limits have been changed to O to ™ since
the integrand is an even function of 0.

The value of r 1s assumed to be positive in the
integrations. For negative wvalues of r, the substitu-
tion 8 = w - @ converts the integral into one similar
to the integral for positive Values of r. The integral
of the second term of equation (B5) is shown later to be
identically zero for all values of |r| < 1. Tt can
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then be seen that wu, which 1s the average value

of v, across the fore-and-aft diameter, is equal to

the value of vy, at the center of the rotor disk since
the curve of v, against r is symmetric about r = 0.

If r 1is put equal to zero in equation (B5),

(B6)

The rate of change of v, along the fore-and-aft
dliemeter cen be immediately found from equation (B5) by
differentiating within the integral sign (this
differentiation is permissible since the denominators
are always greater than zero for |r| < 1), setting

r = 0, and then evaluating the resultant integrals. The
result 1s

~ T
_ v, Vl*—m2 ; _J:f 40
T2 mo T 2 S1pl
=0 1+m= sin-o
_ Vz' \/1+m2 1/
= - -~ -

) ' ;229 (B7)
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The complete evaluation of equation (BS) ig performed
most readily by integrating sach term separately. The
intugratlon is restricted to the case of lr} 1, that
is, within the rotor disk.

The integral of the first term of equation (B5) is
evidently .

It is now shown that the integral of the second
term of equation (B5) 1s identically zero. By using the

conventional transformation tan % = z, the integral
becomes
ui
rf (cos@-r)d@ l:l-zg—r<l+ 22)] dz
e=o1+_r2—2r cos 8 +m° s.Ln 9 <l+r2><1+22> 21.(1., ZLL) bm-—-

(B9)

The integrand is finite everywhere, approaches zero as =z
becomes infinite, and is zero and changes sign only at

the point 22 = ==L, pivide the integral into two
1l +r '
varts: : ,
/‘ V 1+ '
J {) dz = ( ) dz + () dz (B10O)
7=0 z=0 i-v
2T [
l+r
‘ . 1l -r 1
If the trensformation z = == = {35 applied to the
1 +rw

second integral of the right-hand side of equation (B10),
this integral is seen to be identically equal to the
negative of the first integral. The total integral of
equation (R1O), or equatlon (B9), thus is zero. This
integral is not zero, however, if |r| > 1.
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The integral of the third term of eguation (B5) is

equal to

v
2
_r3[1m+ 1 / ds - . ()

6=0 Vé + v - 2r cos ©

where X(r) 1is the complete elliptic integral of the
first kind.

The integral of the last term of equation (B5H)
evaluated by first using the substitution tan % = z,
and thus

then separating into partial fractions,

obtainihg

[~ - F 2
1 4 m J/ V& 2r cos 9-+? a8
9=0 1-2r cos 6 +7° + P sin29

r
m
r(l+r) \/@+ZZ> (k2+22> \/(1+22><k2 Zz)

ID e e a

21m e + P2J£:O 2° 4-ml -#n@ .

(B11)
where
K2 = 1l -r :
- 1+ r
1/1’”2%' 1 + '\/E;Z + I’2
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It is noted that my > 1 and my < 1 for all positive
values of r 1less than 1. By using the substitution

28 + 1 = ;L, the integral of eguation (Bll) is trans-

yZ

formed into the following form after again being
separated into partial fractions:

1

r(r+1) f b1yl - 3%5° \/{-Jy
21m/m2 + 12 <1+bly2>\/l 72 (1 o,5% ) VL - 3@

dy (Bl2)

2 .1, b221~m22, and  3° =1 - ¥X°.
Integral (Bl2) is immedlately transformed into complete

elliptic integrals of the third kind by multiplying the

where bl = my

numerators and denomlinators by - j2y2 and separating
into elliptic integrals of the third kind.

By collecting the various integrals, the complete

evaluation of v, for positive values of r 1is
Y=

v, 1 r

-—Z—’- E T Y —_——-—-—q-K(r)

VZ 2

m sin 7,

* rirr 1) I +'2 ll’ ,3) + s M- .
L tan %"W K]l ’ ) P<2 ! J) <b2 32) HG bg:J}J (B13)

For negative values of r, the sign of the second
and third terms of equation (Bl%) should be changed and

r should be considered a positive number throughout the
resultant formula,
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Figure 1.- Representation of skewed helical vortex wake by circular and linear vortex
wakes.
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Figure 2.- Axes and velocity components of wake.
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Figure 3.- Vertical induced-velocity distribution along the fore-and-aft diameter

of rotor disk for x nm$.
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Figure 5.- Comparison of theoretical induced velocities with values deduced
from pitching-moment data of reference 5.
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Figure 6.- Integration paths A and B of wake.
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Figure 7 .- Coordinate system for obtaining induced
velocities at rotor disk.
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